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1
INTEGRATED CIRCUIT DEVICE METHODS
AND MODELS WITH PREDICTED DEVICE
METRIC VARIATIONS

TECHNICAL FIELD

This disclosure relates generally to integrated circuit
design and modeling, and more particularly to generating
predicted device performance metrics from assumed varia-
tions in fabrication process steps or results.

BACKGROUND

Conventional integrated circuit (IC) design methods utilize
“hardware-based” approaches to predict device metrics (such
as transistor performance metrics). For example, perfor-
mance data can be collected from various dies on a number of
fabricated wafers and then analyzed. Based on such analysis,
models (e.g., transistor models) can then be created, which
can serve as basis for simulating circuit behavior.

Such conventional approaches can suffice for mature fab-
rication processes. However, for processes still under devel-
opment, such hardware data is generally unreliable as fabri-
cation steps can be subject to change or the fabrication
process drifts, making the initial metrics inaccurate thereby
necessitating multiple rounds of design as the circuit behav-
iors evolve with the progression of the process development.
Also, conventional approaches may only present perfor-
mance data, making it difficult to obtain comprehensive infor-
mation on how the sources of particular process variations
can impact different device metrics.

Fabricated IC devices tend to encounter failures or under-
performing components due to fabrication process variations,
for instance, variations in threshold voltage. As a result,
designers may elect to design conservatively, that is, to a
wider set of process corners for the sake of ensuring a robust
design but then sacrificing certain design targets. As semicon-
ductor process advances to support Moore’s law, the chal-
lenges of designing ICs in the context of process development
only increase as the processes become more complex and
therefore difficult to develop and implement. Design compen-
sations for the ever-widening corners only increase. The trend
continues with putting more and more burdens on design
teams to tape out new chip products with satisfactory designs
and meeting timelines for customers.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow diagram of a method according to an
embodiment.

FIG. 2 is a flow diagram of a method according to another
embodiment.

FIG. 3A is a flow diagram of a method according to a
further embodiment.

FIGS. 3B and 3C are graphs showing derived correlations
between device metrics according to very particular embodi-
ments.

FIG. 4 is a flow diagram of a method according to a further
embodiment.

FIG. 5 is a flow diagram of a method according to a further
embodiment.

FIG. 6 is a flow diagram of a method according to an
additional embodiment.

FIG. 7 is a diagram of a model and model elements accord-
ing to an embodiment.
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FIGS. 8A to 8C are diagrams of transistors for which
device metrics can be generated, according to various
embodiments.

DETAILED DESCRIPTION

Various embodiments of the present invention will now be
described in detail with reference to a number of drawings.
The embodiments show methods to generate predicted inte-
grated circuit (IC) device metrics from assumed process
variations, to reliably model circuit behaviors in circuit simu-
lators (e.g., SPICE) even during the course of a fabrication
process that is in-development. Embodiments can enable
designs by way of utilizing statistically derived relationships
between metrics and/or process variations, including but not
limited to: the impact of individual source variations on each
device metric; correlations between different device metrics;
and correlations between different device types.

FIG. 1 shows amethod 100 according to an embodiment. A
method 100 can include selecting IC device fabrication pro-
cess source variations (102). Process source variations usu-
ally refer to process targets relevant to behavior of fabricated
components that can vary based upon variation of corre-
sponding fabrication process steps. Note that while process
source variations can include front-end processes for active
(i.e., transistor) and passive (e.g., resistor, varactors) device
fabrication, such values can also include variations resulting
other process steps, including but not limited to interconnect
metallization process steps or back-end processes (e.g., inter-
connect and/or packaging steps and/or variations).

In very particular embodiments, the process source varia-
tions can include transistor related source variations, includ-
ing but not limited to: gate length (Lgate); gate insulator
thickness (Tox); effective channel width (Wetf); ion implan-
tation energy and dose for threshold voltage adjustment (Vt
dosage); Halo (or pocket)-implant dose; lightly doped drain
(LDD) ion implant dose; transistor spacer thickness; and
other fabrication steps targeting specific dimensions or con-
centrations and profiles to achieve a pre-selected transistor
design. In addition or alternatively, source variations can
include interconnect related variations that could impact
other aspects of a resulting circuit, including but not limited
to: chemical mechanical polishing (CMP) planarization; via
and interlayer dielectric (ILD) thickness; interconnect metal
thickness; interconnect metal width; via and contact size; and
other fabrication steps specific to creating pre-selected struc-
tures to achieve pre-selected circuit elements with intercon-
nected transistors. Still further, process source variations can
include package related variations, including but not limited
to: wiring inductance; wiring resistance; and pad-bond resis-
tance.

Itis understood that these listed values are provided by way
of example only. Any suitable IC production effects can be
included as a process source variation.

While the process source variation are described herein in
reference to transistor structures and in particular, MOS type
field effect transistors (FETs), alternate embodiments can
include process source variation for other device types,
including but not limited to bipolar junction transistors, junc-
tion FETs, finFETs or any other suitable active device.

In some embodiments, process source variations can be
assumed from the expected fabrication process.

A method 100 can also include generating relationships
between each process variance and a device metric variance
(104). Such an action can include generating a value that
reflects the extent to which each selected process source
variations can affect a desired device metric. Such a relation-
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ship value can be expressed as the derivative of metric vari-
ance to source variance (M/3P). In general, the relationship
values for given process source variations can be extracted
using one or more Technology Computer Aided Design
(TCAD) tools.

Device metric values can represent any suitable IC device
performance characteristic. In very particular embodiments,
the device metric values are for representative transistor
behaviors, including but not limited to: linear region thresh-
old voltage (Vtlin), linear region drain current (Idlin); satu-
ration region threshold voltage (Vtsat); drain induced barrier
lowering (DIBL) effect; saturation drain current (Idsat); sub-
threshold swing at saturation (Sssat); effective drain current
(Ieff); gate capacitance (Cgg); and overlap capacitance (Cov)
for a given transistor design and type. In addition or alterna-
tively, device metrics can include interconnect related param-
eters, including but not limited to: via resistance (Rvia); inter-
level capacitance (capacitance between lines of different
layers, Ginter); and intra-level capacitance (capacitance
between lines of same layer, Cintra).

Method 100 further includes calculating IC device metric
specification values from the process source variations and
the variance relationships (106). Such a calculation prefer-
ably uses aroot-sum square mathematical formula as follows:

AM; = oM; ZAP 2
o Z(ﬁf’j]( 7
J

Where 8M,/3P, is the derivative relationship between device
metric value in relation to given process, for instance, the
device metric of threshold voltage as affected by threshold
voltage-setting implant condition, and can generally be
obtained by a pre-modeled computer program such as tech-
nology computer aided design (TCAD); and AP, represents
each of the sources of process variations affecting the behav-
ior of the fabricated transistor, for instance, drawn gate-
length, thickness of gate dielectric, etc.

Once the calculation is performed and the device metric
value AV, is obtained for a given set of conditions, the device
metric value can be used to create transistor models 108 for
circuit simulation for verifying circuit designs, for instance,
in SPICE. The device metric value AM, is preferably deter-
mined for various process variation cases, so that the calcu-
lated device metric value AM, represents the middle as well as
device corner values. Calculated device metric values can
therefore be used to for simulation models to enable evalua-
tion of circuit designs, or can be used with existing circuit
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designs to evaluate the transistor device design itself, and can
enable the evaluation of the semiconductor process from
which the process source variations are obtained, all using
modeling techniques, thereby alleviating the need to run large
amounts of silicon wafers.

FIG. 2 is a flow diagram of a method (200) according to a
further embodiment. A method 200 can include providing
process source variations (AP)) (202). Process source varia-
tions (AP)) normally have a Gaussian distribution and the
sigma values of the distributions can be obtained from the
fabrication process assumptions.

Method 200 can include generating relationships between
a device metric variance and each corresponding process
source variance (OM,/3P)) (204). In general, variance rela-
tionships (8M,/3P)) can be extracted from a tool, such as
TCAD, as but one example.

Method 200 then calculates a metric variation (AM,) with
the selected process source variations and corresponding
variance relationships (206), preferably by applying the root
sum of squares formula at 206. Method 200 can then proceed
to a checkpoint to determine if the input current process
source variations are sound, in other words, sufficient to cal-
culate a next device metric variation (Y from 214). Such an
action can be based on a check of a calculated device metric
AM, against a predetermined set of target device metrics. If
the process source variations are sufficient, then method 200
returns to box 204 to generate new variance relationships to
calculate another device metric. If the current process source
variations are not sufficient to calculate a next device metric
variation (N from 214), a method 200 can return to box 202 to
setup data values 212 for the process source variations nec-
essary to generate the new device metric variation.

Once all desired device metrics have been generated (Y
from 210), an integrated circuit device can be designed using
the predicted device metric variations 208. It is understood
that then, any suitable design steps can be taken from the
predicted device metric variations.

As one example of an implementation of the process of
FIG. 2, there is generated at Table 1 a set of parameters for
3M, and for &P, for an exemplary DDC transistor (further
described below) in a 28 nm process node for a nominal
drawn gate length of 36 nm. Example process variations
sources identified are, L (gate length), Tox (gate oxide thick-
ness), AEpi (epitaxial layer) thickness, AScreen D dose (fur-
ther described below), LDD D (source/drain extension)
implant dosage, Spacer 1 (first sidewall spacer) thickness,
Spacer 2 (second sidewall spacer) thickness, and W (FET
channel width). Related and corresponding device metrics
include Vtlin, Idlin, Vtsat, DIBL, Idsat, SSat, leff, Cgg and
Coy (all described above).

TABLE 1

Process Variation Source (0P

L Tox AEpi  AScreen LDDD Spacerl Spacer2 *W
oM, [/nm] [/A] [/A]  D:[/%] [/%] [mm]  [m]  [/om]
Vtlin [mV/] 880 2200 320 -2.80 -0.50  22.00 050  0.07
Idlin [%/] -1.60  -5.80 -0.82 0.68 029 -1630 -0.28  0.17
Vtsat [mV/] 12.80 1800  3.70 -300 -0.60  32.00 100  0.07
DIBL [mV/]  -4.00 400 -0.50 0.20 0.10 -10.00 -0.50  0.00
Idsat [%/] -3.46  -870 -1.37 1.02 034 -1920 -036  0.17
SSsat [mV/]  -0.21 144 007 -0.02 002 -075  0.00  0.00
leff [%/] -4.10  -1090 -1.61 1.27 036 -20.00 -0.38  0.17
Cgg [%/] 1.50  -2.80 -0.02 0.01 001  -19 003 017
Cov [%/] -0.14  -0.66 -0.11 0.03 006  -655 003 017
Vtlin [mV/] 880 2200 320 -280 -050  22.00 050  0.07




US 9,268,885 B1

5

The derived numbers above, as well as estimated AP, are
then used in the process at Step 206 to result in device metric
variations calculated as a root sum square value. An example
of a result of applying Step 206 is at Table 2 below.

TABLE 2

6

In the very particular embodiment shown, device metric
distributions can be analyzed to determine correlations (if
any) between device metrics 308-0. In one very particular
embodiment, such an action can include calculating a corre-

Process Variation Source (AP;)

AL: ATox:  AEpi: AScreen ALDD ASpacer 1: ASpacer2: *AW: Total
AM; 2 nm 7A 10A  D:5% D:5%  0.6nm 2nm Snm  (RSS)
Vtlin [mV] 17.60  15.40 16.00  -28.00 -2.50 13.20 1.00 0.34 42.05
Idlin [%] -3.20 -406 -4.10 6.80 145 -9.78 -0.56 0.83 13.73
Vtsat [mV] 25.60  12.60 18.50  -30.00 -3.00 19.20 2.00 0.34 49.38
DIBL [mV] -8.00 2.80 =250 2.00 0.50 -6.00 -1.00 0.00 10.92
Idsat [%] -692  -6.09 -6.85 10.20 1.70 -11.52 -0.72 0.83 19.31
SSsat [mV] -042 1.01 0.36 -0.15 0.09 -045 0.01 0.00 1.25
leff [%] -820 -7.63 -8.05 12.70 1.80 -12.00 -0.76 0.83 22.36
Cgg [%] 3.00  -1.96 -0.09 0.09 0.04 -1.14 0.05 0.83 3.85
Cov [%)] -0.28 -046 -0.55 0.50 0.30 -3.93 0.06 0.83 4.13
Vtlin [mV] 17.60  15.40 16.00  -28.00 -2.50 13.20 1.00 0.34 42.05
Idlin [%] -3.20 -406 -4.10 6.80 145 -9.78 -0.56 0.83 13.73
Vtsat [mV] 25.60  12.60 18.50  -30.00 -3.00 19.20 2.00 0.34 49.38
DIBL [mV] -8.00 2.80 =250 2.00 0.50 -6.00 -1.00 0.00 10.92
Idsat [%] -692  -6.09 -6.85 10.20 1.70 -11.52 -0.72 0.83 19.31
SSsat [mV] -042 1.01 0.36 -0.15 0.09 -045 0.01 0.00 1.25

25

The calculated statistical device metric variations based
upon process variations can be used to create a model, for
instance, in SPICE, by which circuits can be simulated as part
of the design process.

Device metric variations can be used to derive the impact of
each source variation on each device metric 208-0. With such
information, an IC device or portion of such a device can be
designed to take into account such high impact source varia-
tions 208-1. In addition or alternatively, transistor models can
be improved using the device metrics 208-2 derived from
process variations. Based on the improved transistor models,
the SPICE model can be improved. Circuits can then be
designed using such improved transistor models 208-3.

FIG. 3A is a flow diagram of a method (300) according to
another embodiment. A method 300 can include generating
distributions for process source variations (N(P))) (302). In
very particular embodiments, such distributions can be Gaus-
sian distributions (with a median value of zero, and a 3-sigma
variation based on sigma=AP/3). Such a distribution can be
generated in a manner like those described above (e.g.,
derived from initial fabrication process assumptions). Pro-
cess source variations (AP)) can include any of those
described for embodiments herein, or equivalents.

A method 300 can then include generating relationships
between a device metric variance and each corresponding to
each process source variance (3M,/3P,) (304). Such relation-
ships can be extracted from TOAD, for example.

A method 300 can then calculate a device metric distribu-
tion (N(M,)) with the selected process source distributions
and corresponding variance relationships (3M,/3P)) (306). In
the embodiment shown, such an action can include generat-
ing a distribution of device metric values, each corresponding
to a value from a process source distribution and the corre-
sponding variance relationship (8M,/0P;). In particular
embodiments, metric distributions N(M,) can be based on
Gaussian distributions for process variations and the metric
distributions can be derived using a Monte-Carlo statistical
approach.

Once all desired device metric distributions have been
generated, the device metric distributions can be used to
facilitate circuit design 308, for instance, to create a model for
circuit simulation.
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lation coefficient between different distributions. For
instance, the correlation between saturation threshold voltage
or saturation drive current between transistor types (e.g.,
n-channel FETs and p-channel FETs) can be determined, as
shown by example in FIGS. 3B and 3C for a 28 nm process
node with drawn gate length of 36 nm.

With such information, a circuit can be designed with
better accuracy with the correlations between devices under-
stood 308-1. The procedure of calculating correlations can be
repeated for various metrics to further refine a circuit design
308-2 and 308-3, for instance, by iterating on the choice of
devices for the different nodes of a circuit.

FIG. 4 is a flow diagram of a method (400) according to
another embodiment. A method 400 can include generating
“corner” process source values (P, _, ) (402). Corner process
source values can be values that lead to a device metric
extreme. Thus, for each possible process source variation
range (AP)) it is known (or can be derived) which direction
(e.g., leading to a “faster’ device or a ‘slower’ device than the
nominal case) represents a corner condition for a given set of
device metrics. Corner process source values (P, ) typi-
cally represent process parameter shifts to cause resulting
devices to behave at the corners of the metric window.

A method 400 can include generating relationships
between a device metric variance and its correspondence to
each process source variance (3M,/3P)) (404), for which the
process source variances can be extracted from a tool, such as
TCAD for example. A method 400 can then calculate a corner
device metric (M, _,,,) for selected process source variances
variance relationships to achieve device behavior at the cor-
ners (406).

Once all desired device metric corners have been gener-
ated, the device metrics can be used to facilitate circuit design
based on corners 408.

In the very particular embodiment shown, corner device
metrics can be incorporated into transistor models of circuit
simulators (e.g., SPICE models) and/or simulator operation
408-0. Circuits can then be designed using such transistor
models 408-1. A benefit of this methodology is that device
metric corner cases can be predicted based on process source
variances and using models for correlating process source
variances with device metrics. For instance, increased chan-



US 9,268,885 B1

7

nel implant dosage results in a device having increased
threshold voltage. When the methodology as embodied
herein is used in the case of devices having reliable operating
characteristics, and wherein the devices enjoy improved
variation in threshold voltage, as well as stronger drive cur-
rent and reduced DIBL, a SPICE model representing corners
that are pulled-in from conventional windows can be created.
Circuits can be simulated based upon the more aggressive
SPICE model, thereby enabling greater options for circuit
power, sizing, speed and other options.

FIG. 5 is a flow diagram of a method 520 according to
another embodiment. A method 500 includes designing an IC
device as a corresponding fabrication process is being devel-
oped. A method 520 includes assuming process source varia-
tions from expected fabrication process steps (524). Prefer-
ably, such assumptions can be made at the start of a
fabrication process development 550. A method 520 can gen-
erate IC device metric values from process source variation
assumptions and corresponding metric/source variance rela-
tionships 526, preferably by extracting the derivative rela-
tionship between device metric and process variation with a
tool, such as TCAD. The device metrics values can then be
used to make a preliminary circuit design 528. It is noted that
such actions can occur while a fabrication process is still
being developed (e.g., 552). The steps can go through itera-
tive loops 530 to refine the device metrics based upon circuit
simulations. The fabrication process development continues
to proceed, using inputs from the device metric updates as
necessary to compare against updates to device variation
metrics 527. When the process is finalized 554, then a final set
of device metric values can be calculated based upon a final-
ized set of process source variations 526, using silicon data as
necessary. The final device metric values are fed into circuit
simulation models. Final refinements can be made to circuit
designs using the circuit simulation models that are fitted to
the final device metric values. The final integrated circuit can
then be fabricated with the finalized process (556).

Referring now to FIG. 6, a method of designing an inte-
grated circuit according to another embodiment is shown in a
flow diagram and designated by the general reference char-
acter 660.

A method 660 can include creating an architectural repre-
sentation of an integrated circuit (or portion thereof) in a
higher level form. In the method of FIG. 6, the integrated
circuit can be instantiated in a high level block schematic
form and further described in a higher level design language
(664).

A method 660 can also include generating a more detailed
(i.e., lower level) representation of the design described by
interconnected circuit blocks. In FIG. 6, this step can include
generating a netlist (step 666). Such a netlist can include
higher order representations of circuit blocks interconnected
to one another by nets.

Method 660 can also include generating device metric
values (626) for each of the components of the netlist using
statistical variation of process parameters, preferably accord-
ing to any of the embodiments described herein. Circuit simu-
lation models (SPICE) can then be created from such device
metric values (608). The device metric values can be input a
transistor simulation tool such as TCAD, to derive a set of
structural and process parameters for the associated transistor
device. Then, the appropriate adjustments could be made to
the transistor design, for instance, longer gate length, or
higher dose of implanted material to set threshold voltage.
The result of starting with the device metric values can be an
improved transistor design. Improved transistor design can be
fed back into the method to derive an updated set of device
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metrics. The updated set of device metrics can be used to
update the models for SPICE, by which updated simulations
(668) of the circuits can be produced.

Referring now to FIG. 7, one particular example of a netlist
is shown in text form. A netlist 770 can include declarations of
element types. In the particular example shown, element
types can include nfet declarations 772 and pfet declarations
774. Such elements (772/774) can have variables based on
device metrics generated as shown in embodiments herein. In
addition or alternatively, such elements can be processed by
simulation software according to such device metrics.

Transistor types (e.g., 772/774) can be conventional tran-
sistors, DDC transistors, or any other transistor types. A ben-
efit of using a DDC transistor is, among other things, in the
ability to pull in design corners and using the methods of the
embodiments contemplated herein to refine the fabrication
and create improved circuit simulation models.

FIG. 8A shows a DDC type transistor 870 for which device
metrics can be generated, according to embodiments. A DDC
transistor 870 can be configured to have an enhanced body
coefficient, along with the ability to set a threshold voltage
(Vt) with enhanced precision. A DDC transistor 870 can
include a gate electrode 882, source 884, drain 886, and a gate
dielectric 888 positioned over a substantially undoped chan-
nel 811. Optional lightly doped source and drain extensions
(SDE) 890 can be positioned respectively adjacent to source
884 and drain 886. Such extensions 890 can extend toward
each other, reducing effective length of the substantially
undoped channel 811.

In FIG. 8A, the DDC transistor 870 is shown as an n-chan-
nel transistor having a source 884 and drain 886 made of
n-type dopant material, formed upon a substrate such as a
p-type doped silicon substrate providing a p-well 817. In
addition, the n-channel DDC transistor 870 in FIG. 8A can
include a highly doped screening region 815 made of p-type
dopant material, and a threshold voltage set region 813 made
of p-type dopant material.

Further descriptions of a DDC transistor as well as an
exemplary fabrication process and other aspects of a DDC
transistor can be found in U.S. Pat. No. 8,273,617, titled
“Electronic Devices and Systems, and Methods for Making
and Using the Same.” A DDC transistor provides advantages
for circuit design in that, among other reasons, a DDC tran-
sistor enables designs having pulled-in corners. The reason is
the tighter distribution of the threshold voltage from device-
to-device. Additionally, a DDC transistor includes a strong
body coefficient by which body biasing can be used to further
pullin design corners. A result of using a DDC transistor is the
ability to implement improved integrated circuit designs
according to desired targets for power and performance
whereas when using conventional transistors circuit design-
ers resort to designing conservatively for wider design cor-
ners thereby sacrificing the potential power and performance
that could be otherwise achieved for a design. An advantage
of using a DDC transistor as part of implementing on the
embodiments described herein is in the ability to reliably
design integrated circuits using a statistically-based, process
variation-comprehending simulation model by which design
corners could be shrunk.

FIG. 8B shows a FinFET type transistor 870-B for which
device metrics can be generated, according to additional
embodiments. The FinFET transistor 870-B can include a
gate electrode 882-B and gate dielectric 888-B that surround
a substantially undoped channel 811-B on opposing sides.
The view of FIG. 8B is taken along a channel length. Thus, it
is understood that source and drain regions can extend into
and out of the view shown.
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FIG. 8C shows a FinFET type transistor 870-C having a
screening region 815-C, for which device metrics can be
generated according to further embodiments. As inthe case of
FIG. 8A, the FinFET transistor 870-C has a screening region
that can be configured to have an enhanced body coefficient,
along with the ability to set a Vt with enhanced precision. The
transistor 870-C includes a gate electrode 882-C and gate
dielectric 888-C formed over a substantially undoped channel
811-C on opposing sides. However, unlike FIG. 8B, a highly
doped screening region 815-C can be formed in a substrate
819 below substantially undoped channel 811-C. Optionally,
a Vt set region 813-C can be formed between the screening
region 815-C and substantially undoped channel 811-C.

As in the case of FIG. 8B, the view of FIG. 8C is taken
along a channel length, and source and drain regions can
extend into and out of the view, separated from screening
region 815-C by portions of undoped channel region 811-C.

The geometries of transistor 870-B can be the source of
additional process source variations, not included for metrics
of conventional transistors. Further, the geometries of tran-
sistor 870-C, as well as the Vt set region and screening region,
can be the subject of process source variations for metrics of
such a transistor.

Asnoted above, the various methods and models according
to embodiments can be utilized to generate device metrics for
other transistor types (e.g., conventional MOSFETs, BJTs,
JFETs, etc.).

It should be appreciated that in the foregoing description of
exemplary embodiments of the invention, various features of
the invention are sometimes grouped together in a single
embodiment, figure, or description thereof for the purpose of
streamlining the disclosure aiding in the understanding of one
or more of the various inventive aspects. This method of
disclosure, however, is not to be interpreted as reflecting an
intention that the claimed invention requires more features
than are expressly recited in each claim. Rather, as the fol-
lowing claims reflect, inventive aspects lie in less than all
features of a single foregoing disclosed embodiment. Thus,
the claims following the detailed description are hereby
expressly incorporated into this detailed description, with
each claim standing on its own as a separate embodiment of
this invention.

It is also understood that the embodiments of the invention
may be practiced in the absence of an element and/or step not
specifically disclosed. That is, an inventive feature of the
invention may be elimination of an element.

Accordingly, while the various aspects of the particular
embodiments set forth herein have been described in detail,
the present invention could be subject to various changes,
substitutions, and alterations without departing from the
spirit and scope of the invention.

What is claimed is:

1. A method, comprising:

assuming variation among process targets for a plurality of

integrated circuit (IC) fabrication process sources of
variation;

deriving relationships between each process source vari-

ance of the IC fabrication process and a device metric
variance by operation of a computer program executed
by a computer, the device metric variance being a vari-
ance in an IC performance characteristic;

generating a predicted device metric variation by at least

multiplying each process source variation by the corre-
sponding relationships between its process source vari-
ance and the device metric variance; and

designing at least a portion of an integrated circuit with the

predicted device metric variation; wherein.
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generating the predicted device metric variation includes

calculating a root sum square of process source variations
and the relationships between the corresponding process
source variance and the device metric variance;

designing the at least a portion of the integrated circuit
includes selecting process source variations having a
greatest effect on the predicted device metric variation
and creating a transistor performance model from at
least the device metric; and

fabricating the at least a portion of the integrated circuit
with the predicted device metric variation.

2. The method of claim 1, wherein:

the relationships are generated from a semiconductor
design automation tool executed by the computer.

3. The method of claim 2, wherein:

the relationships are generated from a technology com-
puter aided design (TCAD) automation tool.

4. The method of claim 1, wherein:

the assumed variation values correspond to an IC fabrica-
tion process still under development.

5. A method, comprising:

assuming variation among process targets for a plurality of
integrated circuit (IC) fabrication process sources of
variation;

deriving relationships between each process source vari-
ance of the I C fabrication process and a device metric
variance by operation of a computer program executed
by a computer, the device metric variance being a vari-
ance in an I C performance characteristic;

generating a predicted device metric variation by at least
multiplying each process source variation by the corre-
sponding relationships between its process source vari-
ance and the device metric variance; and

designing at least a portion of an integrated circuit with the
predicted device metric variation; wherein

generating the predicted device metric variation includes

generating a device metric distribution from process source
variation distributions and the relationships between the
corresponding process source variance and the device
metric variance;

designing the at least a portion of the integrated circuit
includes any selected from the group consisting of:
deriving correlations between device metrics and deriv-
ing correlations between device types; and

fabricating the at least a portion of the integrated circuit
with the predicted device metric variation.

6. The method of claim 5, wherein:

the relationships are generated from a semiconductor
design automation tool executed by the computer.

7. The method of claim 6, wherein:

the relationships are generated from a technology com-
puter aided design (TCAD) automation tool.

8. The method of claim 5, wherein:

the assumed variation values correspond to an IC fabrica-
tion process still under development.

9. A method, comprising:

assuming variation among process targets for a plurality of
integrated circuit (IC) fabrication process sources of
variation;

deriving relationships between each process source vari-
ance of the IC fabrication process and a device metric
variance by operation of a computer program executed
by a computer, the device metric variance being a vari-
ance in an IC performance characteristic;

generating a predicted device metric variation by at least
multiplying each process source variation by the corre-
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sponding relationships between its process source vari-
ance and the device metric variance; and

designing at least a portion of an integrated circuit with the
predicted device metric variation; wherein

generating the predicted device metric variation includes
generating a corner device metric corresponding to cor-
ner process

source values, the corner process source values corre-
sponding to an extreme end of a range of possible pro-
cess source values;

designing the at least a portion of the integrated circuit
includes designing a transistor model with at least the
corner device metric; and

fabricating the at least a portion of the integrated circuit
with the predicted device metric variation.

10. The method of claim 9, wherein:

the relationships are generated from a semiconductor
design automation tool executed by the computer.

11. The method of claim 10, wherein:

the relationships are generated from a technology com-
puter aided design (TCAD) automation tool.

12. The method of claim 9, wherein:

the assumed variation values correspond to an IC fabrica-
tion process still under development.
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